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Abstract

This paper studies the nonlinear vibration of a three-phase AC motor–linkage mechanism system with links fabricated

from three-dimensional braided composite materials. Taking the drive motor and the linkage mechanism as an integrated

system, the dynamic equations of the system are established by the finite element method. The relation between the

nonlinear vibration of the system and the parameters of the system is obtained by the method of multiple scales. Results

show that not only the structural parameters, but also the electromagnetic parameters and the material parameters have

significant effects on the nonlinear vibration of the system. Finally, a numerical example is presented.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

With the use of high-speed, lightweight and high-precise mechanical transmission systems in modern
industries, the investigation of the nonlinear dynamics of flexible linkage mechanisms become more and more
important. Thus, many scholars have wildly studied the nonlinear dynamics of elastic linkage mechanisms by
different methods for their different purposes. Chunmei et al. [1] have analyzed the nonlinear behavior of a
rigid linkage mechanism with clearances through the phase portraits and Poincare maps. Seneviratne and
Earles [2] have initially analyzed the nonlinear behavior of four-bar mechanism caused by joint clearances.
Wang [3] has analyzed the nonlinear behavior of an elastic linkage mechanism due to the large elastic
deformations of flexible links. Their studies show that there exist two main nonlinear factors in the dynamics
of linkage mechanisms: one is the joint clearance of linkage mechanisms; the other is the large elastic
deformation of flexible links. Although more and more researchers have paid their attention to the
investigation of the nonlinear dynamics of flexible linkage mechanisms and gained some achievements [4,5],
they have not taken the drive motor and the linkage mechanism as an integrated system to study.

However, some unexpected phenomena often emerge in the operation of these high-speed mechanisms. For
example, these high-speed and lightweight mechanisms sometimes produce intense vibration caused by the
magnetic syntony of drive motor. The main reasons are that the nonlinear vibration and coupling dynamics of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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electromechanical systems are not studied deeply, and that the internal relation between macro-dynamic
characters of electromechanical systems and electromagnetic parameters of drive motors is not discovered
generally. So it is necessary to take the drive motor and the mechanism as an integrated system to
study.

The three-dimensional braided fiber-reinforced composite material is an ideal material for actuating
mechanism used in the high-speed mechanisms [6–8]. The purpose of this paper is to investigate the nonlinear
vibration of a three-phase AC motor–linkage mechanism system with links fabricated from three-dimensional
braided composites. Taking the drive motor and the mechanism as an integrated system, the dynamic
equations of the system are established by the finite element method. Based on the dynamic equations of the
system, the relation between the nonlinear vibration of the system and the parameters of the system is studied.
Some helpful conclusions are obtained. At last, a numerical example is presented.

The diagram of the system is shown in Fig. 1. In order to simplify the discussion, the output shaft of the
motor is regarded to be connected with the crank of the linkage directly.

2. Dynamic equations

2.1. Electromotor element

In the dynamic analysis of electromotor shaft, the following simplifications are employed: (1) The coupling
terms of the elastic motion and the rigid body motion in the coriolis acceleration and transport acceleration
are neglected in studying the absolute acceleration of any point in the shaft. (2) The effect of shearing
deformation and pull–press deformation caused by transverse displacements is neglected in calculating the
deformation energy. (3) Considering the lower length–diameter ratio of the electromotor rotor, it is regarded
as a rigid body.

The elasticity of motor shaft is mainly taken into account in the analysis of vibration, and the shaft-disk
system model is adopted in the dynamic analysis of system. The elastic motions of shaft-disk system are
decided by both the eccentricity vibration of centroid of rotor, namely, the transverse vibration, and the
torsional vibration of output shaft with respect to the rotor, as is shown in Fig. 2. In the diagram, numbers 1–4
denote four nodes of the element, respectively. Node 1 is set to the midpoint of the left supporting bearing, its
nodal displacements are all 0; node 2 is set to the geometrical center of the electromotor rotor, and it has two
nodal displacements, namely, the displacement u1 and u2 along the Y- and Z-axis direction, respectively; node
3, which is set to the midpoint of the right supporting bearing, has a nodal displacement u3, namely, the angle
of the torsion; node 4, which is set to the output of the shaft, has a nodal displacement u4, namely, the angle of
torsion. So the transverse vibration and the torsional vibration can be expressed by the generalized-coordinate
vector u1 ¼ fu1 u2 u3 u4g

T. In the diagram, XYZ is a rotating coordinate system.
a——AC motor  b——crank  c——coupler   d——rocker 

a

b

c

d

Fig. 1. Diagram of the motor–linkage mechanism system: (a) AC motor, (b) crank, (c) coupler, and (d) rocker.
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Fig. 2. Diagram of the electromotor element.
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Fig. 3. Schematic diagram of air-gap eccentric vibration.
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Considering the moment of inertia of the electromotor shaft (including rotor), the kinetic energy of the
electromotor element can be expressed as

T1 ¼
1

2

Z l1

0

½m1ðxÞ þm10dðl11Þ� ½ _W 1Yaðx; tÞ�
2 dxþ

1

2

Z l1

0

½m1ðxÞ þm10dðl11Þ� ½ _W 1Zaðx; tÞ�
2 dx

þ
1

2

Z l1

0

½J1ðxÞ þ J10� ½ _V1aðx; tÞ�
2 dx, ð1Þ

where l1 ¼ l11 þ l12 þ l13 is the length of the electromotor shaft, and l11, l12 and l13 are, respectively, the length
between point 1 and point 2, point 2 and point 3, point 3 and point 4; m1(x) is the mass distribution function of
the electromotor shaft; m10 is the rotor mass which is at x ¼ l11; J1(x) is the moment of inertia distribution
function of the electromotor shaft; J10 is the moment of inertia of the rotor which is at x ¼ l11; _W 1Yaðx; tÞ is the
transverse absolute velocity in the Y direction on the point of the electromotor shaft whose coordinate is x,
_W 1Zaðx; tÞ is the transverse absolute velocity in the Z direction on the point of the electromotor shaft whose
coordinate is x, _V1aðx; tÞ is the absolute angular velocity of the cross section on the electromotor shaft whose
coordinated is x.

Omitting the shearing deformation energy and yield deformation energy, the elastic potential energy of the
element can be written as

N11 ¼
1

2

Z l1

0

E1I1ðxÞ
q2W 1Y ðx; tÞ

qx2

� �2
dxþ

1

2

Z l1

0

E1I1ðxÞ
q2W 1Zðx; tÞ

qx2

� �2
dxþ

1

2

Z l1

0

G1J01ðxÞ
qV 1ðx; tÞ

qx

� �2
dx;

(2)

where W1Y(x, t) is the transverse displacement in the Y direction on the point of the electromotor shaft whose
coordinate is x, W1Z(x, t) is the transverse displacement in the Z direction on the point of the electromotor
shaft whose coordinate is x, V1(x, t) is the angle of elastic torsion on the point of the electromotor shaft whose
coordinate is x (see Appendix); E1 is the Young’s modulus of the electromotor shaft material; G1 is the shear
elastic modulus of the electromotor shaft material; I1(x) is the distribution function of the anti-bending
sectional moment of inertia of the electromotor; J01(x) is the distribution function of the polar moment of
inertia of the electromotor.
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The air-gap eccentric vibration of the rotor is shown in Fig. 3, where point O is the inner circle geometric
center of the stator, point O1 is the outer circle geometric center of the rotor and its coordinate is (u1, u2), d is
the length of air gap, e is the air-gap eccentricity and

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ u2

2

q
. (3)

According to electromechanical analysis dynamics, the air-gap magnetic energy of the electromotor can be
written as [9]

N12 ¼
R1L01

2

Z 2p

0

L0

X1
n¼0

�n1 cos
n ða� j1Þ ½F 1m cos ðo0t� aÞ þ F2m cos ðj1 þ so0t� a� fÞ�2 da, (4)

where R1 is the inner radius of the electromotor stator; L01 is the effective length of the rotor; L0 ¼ m0/s, is the
even air-gap permeance of the electromotor, s ¼ kmd0, m0 is the magnetic permeability coefficient of air, km is
saturation, km ¼ 1þ dFe=k1d0, k1 is the calculation air-gap coefficient of the even air gap, dFe is the equivalent
air-gap of ferromagnetic materials; �1 ¼ e=kmd0, is the effective relative eccentricity; o0 ¼ 60f =p, is the
synchronous speed of electromotor, f is the frequency of power, p is the number of magnetic pole-pair of the
compounded magnetic field; s is the slide ratio; j1 is the rotation angle of the crank; f is the phase angle of
rotor current lagging behind the stator current; F1m and F2m are the three-phase compounded magnetomotive
amplitude of the stator and rotor, respectively.

The total potential energy N1 of the element contains the elastic potential energy N11 and the air-gap
magnetic energy of electromotor N12, namely

N1 ¼ N11 þN12. (5)

Lagrange equation which is used in the electromotor element can be expressed as

d

dt

qT1

q_u1

� �
�

qT1

@u1
þ
@N1

@u1
¼ f̄1 þ q̄1, (6)

where f̄1 is the external excitation force vector, q̄1 is the force vector exerted on the electromotor element by
the other elements connecting to the electromotor element.

Substituting Eqs. (1)–(5) into Eq. (6), rearranging, and omitting the effect of the damping, the dynamic
equation of the electromotor element is obtained as

m̄1 €u1 þ ðk̄1 þ k̄01Þu1 ¼ f̄1 þ q̄1 � m̄1 €u1r, (7)

where m̄1 is the mass matrix of the electromotor element, k̄1 is the stiffness matrix of the electromotor element
related to N11, k̄01 is the stiffness matrix of the electromotor element related to N12 (see the Appendix); €u1r is
the rigid body acceleration vector of the electromotor element.

2.2. Beam element of three-dimensional braided composite materials

The basic fiber structure of the three-dimensional braided composite materials is of three-dimensional and
four-directional texture, as is shown in Fig. 4 [6], and the geometrical unit-cell can be adopted in analysis, as is
shown in Fig. 5 [7]. Four bundles of braided yarns are in the diagonal direction of the unit-cell, and intersect at
the center point O. Each braided yarn makes an angle a with x-axis, called the braided angle, and its projection
in the y–z plane makes an angle b with y-axis. As is shown in Fig. 4, the a and b belong to the first direction
braided yarn. By analyzing the stiffness characteristic of this material by the laminated plate analogy,
the materials can be regarded as the superposition of four unidirectional fiber composite materials, and
the stiffness of the materials is the superposition of stiffness of the four parts according to their volume
fractions [8].

In general, the links of the linkage mechanism are slim bars, so the links fabricated from three-dimensional
braided composites can be simulated using the beam element.
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Fig. 4. Three-dimensional and four-directional structure of the three-dimensional braided composite material.
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Fig. 5. Geometrical unit cell.
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According to the finite element method, the generalized-coordinate vector of the beam element of three-
dimensional braided composite materials can be expressed as

u2 ¼ fu5 u6 u7 u8 u9 u10 u11 u12g
T,

where u5 and u9 are the longitudinal displacements of the nodes, u6 and u10 are the transverse displacements of
the nodes, u7 and u11 are the elastic rotation angles of axes at the nodes, u8 and u12 are the curvatures of axes at
the nodes.

The kinetic energy of the beam element can be expressed as

T2 ¼
1

2

Z l2

0

m2ðx̄Þ ½ _W 2aðx̄; tÞ�
2 dx̄þ

1

2

Z l2

0

m2ðx̄Þ ½ _V2aðx̄; tÞ�
2 dx̄, (8)

where x̄ is the coordinate of the beam element in the local coordinate system; l2 is the length of the beam
element; m2ðx̄Þ is the mass distribution function of the beam element, m2ðx̄Þ ¼ r2A2ðx̄Þ, r2 is the average mass
density of materials, r2 ¼ r2f v2f þ r2mv2m, r2f and r2m are the densities of fiber and matrix, respectively, v2f

and v2m are the volume ratio of fiber and matrix, respectively, A2ðx̄Þ is the distribution function of the area of
the cross-section of the beam element; _W 2aðx̄; tÞ is the transverse absolute velocity of the central point of any
cross section of the element; _V 2aðx̄; tÞ is the longitudinal absolute velocity of the central point of any cross
section of the element; W 2ðx̄; tÞ is the transverse displacement of the central point of any cross section of the
element, V 2ðx̄; tÞ is the longitudinal displacement of the central point of any cross section of the element
(see the Appendix).
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According to microstructure of composite materials, the strain energy of the jth part in the beam element
can be expressed as

N2j ¼
1

2

Z
Oj

�T2js2j dOj, (9)

where Oj is the volume of the jth part; e2j and r2j are, respectively, the strain and stress vectors of the jth part in
its orthogonal axis coordinate system x0y0z0.

Each part can be considered as transverse isotropic, so the constitutive relation of the jth part in its
orthogonal axis coordinate system x0y0z0 can be expressed as [8]

r2j ¼ C2je2j, (10)

where

C2j ¼

C11 C12 C13

C12 C22 C23 0

C13 C23 C33

C44

0 C55

C66

0
BBBBBBBBB@

1
CCCCCCCCCA
,

C11 ¼ ð1� m23m23ÞE11=K ; C12 ¼ ð1þ m23Þm21E11=K ;

C22 ¼ C33 ¼ ð1� m21m12ÞE22=K ; C23 ¼ ðm23 þ m12m21ÞE22=K ;

C44 ¼ G23;C55 ¼ G13;C66 ¼ G12; K ¼ 1� 2m12m21ð1þ m23Þ � m23m23

according to micromechanics of composite materials, the elastic constants Eij, Gij and mij can be calculated
from elastic constants of fiber and matrix, volume ratio of fiber and the microstructure parameters of
composite materials.

The strain vector of the jth part in the beam coordinate system xyz can be obtained from the transition
relation of strain in elastic mechanics as

e2j ¼ L2je2, (11)

where L2j is the transition matrix of strain which is determined by the direction cosine between the beam
coordinate system xyz and the orthogonal axis coordinate system z0y0z0 of the jth part; e2 is the strain vector of
the beam element.

The relation between the strains and nodal displacements can be written as [8]

e2 ¼ S2u2, (12)

where

S2 ¼ ½S21 S22 S23 S24 S25 S26�
T,

S21 ¼ ff
0
5ðx̄Þ 0 0 0 f09ðx̄Þ 0 0 0gT,

S25 ¼ f0 f06ðx̄Þ f07ðx̄Þ f08ðx̄Þ 0 f010ðx̄Þ f011ðx̄Þ f012ðx̄Þg
T,

S22 ¼ S23 ¼ S24 ¼ S26 ¼ f0 0 0 0 0 0 0 0gT.

Substituting Eqs. (10)–(12) into Eq. (9), rearranging, the following equation can be obtained as

N2j ¼ uT2
1

2

Z
Oj

ST
2L

T
2jC2jL2jS2 dOj

 !
u2. (13)
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As described above, the three-dimensional braided composite materials can be regarded as the superposition
of four unidirectional fiber composite materials, so the total potential energy of the beam element is

N2 ¼ uT2

X4
j¼1

1

2

Z
Oj

ST
2L

T
2jC2jL2jS2 dOj

 !
u2. (14)

Lagrange equation which is used in the beam element of three-dimensional braided composite materials can
be expressed as

d

dt

qT2

q _u2

� �
�

qT2

qu2
þ

qN2

qu2
¼ f̄2 þ q̄2, (15)

where f̄2 is the external excitation force vector, q̄2 is the force vector exerted on the beam element by the other
elements connecting to the beam element.

Substituting Eqs. (8) and (14) into Eq. (15), rearranging, and omitting the effect of the damping, the
dynamic equation of the beam element of three-dimensional braided composite materials is obtained as

m̄2 €u2 þ k̄2u2 ¼ f̄2 þ q̄2 � m̄2 €u2r, (16)

where m̄2 is the mass matrix of the beam element, k̄2 is the stiffness matrix of the beam element
(see the Appendix); €u2r is the rigid body acceleration vector of the beam element.

2.3. Dynamic equations

In order to simplify the problems and make the leading issues prominent, the three-phase AC
motor–linkage mechanism system with links fabricated from three-dimensional braided composites is divided
into six elements. The electromotor is regarded as one element, as shown in Fig. 6. The crank is regarded as
one beam element, and the coupler and the rocker are, respectively, divided into two beam elements, as shown
in Fig. 7. The serial numbers of the nodes are represented by 1, 2, y. The serial numbers of the elements are
represented by A, B, y. The serial numbers of the links are represented by (1), (2), y. U1, U2, U7, U8, U11,
U12, U15, U16, U19, U20 are the elastic displacements; U5, U9, U10, U13, U17, U18, U21, U23 are the elastic
rotation angles; U3, U4 are the torsion angles; U6, U14, U22, U24 are the curvatures. So the elastic displacement
vector of the system in the global coordinates is

U ¼ fU1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13

U14 U15 U16 U17 U18 U19 U20 U21 U22 U23 U24g
T.

Assuming that Ri is the transformation matrix of the ith element between the element coordinates and the
global coordinates, and Bi is the coordinate compatible matrix of the ith element between the local number
and the global number, the dynamic equation of the element A in the global coordinates can be expressed as

Me
1
€Uþ ðKe

1 þ Ke
01ÞU ¼ Fe

1 þQe
1 �Me

1
€Ur, (17)

where U, €U, €Ur, respectively, represent the elastic displacement vector, the acceleration vector and the rigid
body acceleration vector of the system in the global coordinates, and

Me
1 ¼ BT

1R
T
1 m̄1R1B1; Ke

1 ¼ BT
1R

T
1 k̄1R1B1; Ke

01 ¼ BT
1R

T
1 k̄01R1B1,
z
y

x

U 1

U 2

U 3 U 4

O

1
2

3 4

(1)

Fig. 6. Electromotor element.
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Fig. 7. Elastic linkage mechanism.
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Fe
1 ¼ BT

1R
T
1 f̄1; Qe

1 ¼ BT
1R

T
1 q̄1.

The dynamic equation of the ith element in the global coordinates can be expressed as

Me
i
€Uþ Ke

i U ¼ Fe
i þQe

i �Me
i
€Ur, (18)

where i ¼ 2; 3; 4; 5; 6, and

Me
i ¼ BT

i R
T
i m̄2RiBi; Ke

i ¼ BT
i R

T
i k̄2RiBi; Fe

i ¼ BT
i R

T
i f̄2; Qe

i ¼ BT
i R

T
i q̄2.

Without consideration of the effect of the damping of the system by Eqs. (17) and (18), the dynamic
equation of the system can be obtained as

M €Uþ ðKþ K01ÞU ¼ F�M €Ur, (19)

where

M ¼
X6
i¼1

Me
i ; K ¼

X6
i¼1

Ke
i ; K01 ¼ Ke

01; F ¼
X6
i¼1

Fe
i .

Assuming that the damping changes with elastic distortion in direct ratio, and considering the effect of the
damping of system, the dynamic equation of the motor–elastic linkage mechanism system with links fabricated
from three-dimensional braided composites is

M €Uþ C _Uþ ðKþ K01ÞU ¼ F�M €Ur, (20)

where C is the damping matrix of the system.

3. Analysis of nonlinear vibration

According to electromechanical dynamics, the dynamic equation of the electromotor shaft, which is rotating
around its fixed axis, can be written as

J0 €j1 ¼ Te � TCu � Tr � T0, (21)

where J0 is the moment of inertial of the electromotor shaft, including the moment of inertia of the rotor J10;
Te is the electromagnetic torque of the electromotor; TCu is the copper loss torque of the electromotor; Tr is
the load torque of the electromotor; T0 is the runaway braking torque of the electromotor, which is much
smaller than Tr.

According to electromechanical dynamics, Te can be written as

Te ¼
qN12

qj1

. (22)
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Substituting Eq. (4) into Eq. (22), and rearranging, Te is obtained as

Te ¼
g1

J0
þ

g1

2s2J0
ðU2

1 þU2
2Þ �

g2

4s2J0
ðU2

1 �U2
2Þ �

g3

2s2
U1U2

� �
sin ðO0tÞ

þ
g3

4s2J0
ðU2

1 �U2
2Þ þ

g2

2s2J0
U1U2

� �
cos ðO0tÞ, ð23Þ

where U1, U2 are, respectively, the first and second coordinates which represent the elastic displacement of the
electromotor shaft, as shown in Fig. 6,

g1 ¼ pRL0L0F1mF2m sin f,

g2 ¼ pRL0L0ðF 1mF 2m cos fþ F2
2m cos 2fÞ,

g3 ¼ pRL0L0ðF 1mF 2m sin fþ F2
2m sin 2fÞ

and

O0 ¼ 2o0. (24)

According to electromechanical dynamics, TCu can be written as

TCu ¼ sTe, (25)

where s is the slip ratio.
According to mechanics of materials, Tr can be written as

Tr ¼ E2I2U6, (26)

where E2 is the Young’s modulus of the material of the crank, I2 is the moment of inertial of the root of the
crank, U6 is the sixth coordinate which represents the curvature of the crank, as shown in Fig. 7.

Substituting Eqs. (23), (25), (26) into Eq. (21), omitting T0, and rearranging, the following equation can
be given:

€j1 ¼ �
E2I2

J0
U6 þ �

ð1� sÞg1

2s2J0
ðU2

1 þU2
2Þ þ ð1� sÞ

g3

4s2J0
ðU2

1 �U2
2Þ

��

þ
g2

2s2J0
U1U2

�
cos ðO0tÞ � ð1� sÞ

g2

4s2J0
ðU2

1 �U2
2Þ �

g3

2s2
U1U2

� �
sin ðO0tÞ

�
. ð27Þ

Replacing U1, U2 and U6 by U, and rearranging, Eq. (27) can be written as

€j1 ¼ UT
�1UþUTK�1UþUTK�2U cos ðO0tÞ þUTK�3U sin ðO0tÞ, (28)

where Ke1, Ke2, Ke3 are the 24th-order matrixes, Ue1 is the 24th-order vector, and

ðU�1Þ6 ¼ �
E2I2

J0
; ðK�1Þ11 ¼ ðK�1Þ22 ¼

ð1� sÞg1

2s2J0
,

ðK�2Þ11 ¼
ð1� sÞg3

4s2J0
; ðK�2Þ22 ¼ �

ð1� sÞg3

4s2J0
; ðK�2Þ21 ¼ ðK�2Þ12 ¼

ð1� sÞg2

2s2J0
,

ðK�3Þ11 ¼ �
ð1� sÞg3

4s2J0
; ðK�3Þ22 ¼

ð1� sÞg3

4s2J0
; ðK�3Þ21 ¼ ðK�3Þ12 ¼

ð1� sÞg2

2s2J0
,

the other terms of Ue1, Ke1, Ke2, Ke3 are all zero.
The self-excitation inertia force of the system can be represented as

Q ¼ �M €Ur, (29)

where €Ur is the rigid body acceleration vector of the system in the global coordinates.
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According to mechanisms, €Ur can be expressed as [10]

€Ur ¼ Uo _j2
1 þU� €j1, (30)

where Uo and Ue are the 24th-order coefficient vectors which are determined by the structural parameters of
the system.

Substituting Eqs. (28) and (30) into Eq. (29), expanding the parts of the self-excitation inertia force which is
related to _j2

1 into Fourier series, and rearranging, the following equation can be given:

Q ¼
XN

k¼1

FDk �MU�U
T
�1U�MU�U

TK�1U

�MU�U
TK�2U cos ðO0tÞ �MU�U

TK�3U sin ðO0tÞ, ð31Þ

where N and FDk are, respectively, the maximum selected term number and vector of the k-order term of the
expansion of the Fourier series, and FDk is expressed as

ðFDkÞi ¼ FDki cos ðkO1tþ jkiÞ, (32)

where Oi is the rotating speed of rotor, FDki and jki are, respectively, the amplitude and phase angle, which can
be obtained by the expansion of Fourier series.

According to the derivation of Eq. (20), K01 is determined by the electromagnetic parameters of the motor,
and it can be expressed as

K01 ¼ K11 þ K12 cos ðO0tÞ þ K13 sin ðO0tÞ, (33)

where K11, K12, K13 are all the 24th-order matrices (see the Appendix).
Without consideration of the external excitation force F, substituting Eqs. (29), (31) and (33) into Eq. (20),

introducing e as the designator for these small quantities, and rearranging, the following equation can
be given:

M €Uþ KU ¼
XN

k¼1

FDk þ �½�MU�U
T
�1U�MU�U

TK�1U

�MU�U
TK�2U cos ðO0tÞ �MU�U

TK�3U sin ðO0tÞ

� K11U� K12U cos ðO0tÞ � K13U sin ðO0tÞ � C _U�. ð34Þ

Eq. (34) shows that the dynamic equation of the motor–elastic linkage mechanism system with links fabricated
from three-dimensional braided composites is nonlinear.

Assuming that the linear transfer functions are:

U ¼ /g;
_U ¼ / _g;
€U ¼ / €g;

8><
>: (35)

where / is the modal transfer matrix, g is the modal coordinate vector corresponding to /.
Substituting Eq. (35) into Eq. (34), multiplying the equation by /T, and rearranging, the following equation

can be given:

€gþ K0g ¼
XN

k¼1

F0Dk þ �½�/TMU�U
T
�1/g� /TMU�g

TK0�1g

� /TMU�g
TK0�2g cos ðO0tÞ � /TMU�g

TK0�3g sin ðO0tÞ

� K011g� K012g cos ðO0tÞ � K013g sin ðO0tÞ � C0 _g�, ð36Þ

where

K011 ¼ /TK11/; K012 ¼ /TK12/; K013 ¼ /TK13/,

K0�1 ¼ /TK�1/; K0�2 ¼ /TK�2/; K0�3 ¼ /TK�3/,
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K0 ¼

. .
.

o2
r

. .
.

2
6664

3
7775; C0 ¼

. .
.

2xror

. .
.

2
6664

3
7775; F0Dk ¼ /TFDk

and xr and or are, respectively, the damping ration and the natural frequency of the r-order mode of the
system.

Definition. For a nonlinear system with multi-degrees-of-freedom, the frequency of each expanded term at the
right side of the normal equation of the first-order approximate nonlinear system is defined as the frequent
factor. If a frequent factor appears in more than one place or more than one time, only one frequent factor is
counted, i.e. all the terms which are with the same frequent factor are considered as one term [3].

Using the method of multiple scales [11], the corresponding frequent factors of Eq. (36) can be obtained as:

kO1; ðk � pÞO1; kO1 � or; or � oi;

O0; O0 � or; O0 � kO1; O0 � ðk � pÞO1;

O0 � 2or; O0 � ðor � oiÞ; O0 � ðor � kO1Þ;

8><
>: (37)

where r; i ¼ 1; 2; . . . ; 24; k; p ¼ 1; 2; . . . ;N.
According to the theory of nonlinear vibration, some resonance phenomena will take place in the system

under certain conditions:
(1) On condition that kO1 � or or ðk � pÞO1 � or, the super-harmonic resonance will take place in the

system.
(2) On condition that O0 � or, the primary resonance will take place in the system.
(3) On condition that O0 � or � or, namely O0 � 2or, the 1/2-order sub-harmonic resonance will take place

in the system.
(4) On condition that O0 � 2or � or, namely O0 � 3or, the 1/3-order sub-harmonic resonance will take

place in the system.
(5) On condition that O0 � or � oj, or O0 � ðor � oiÞ � oj, or O0 � ðor � kO1Þ � oj, or O0 � kO1 � oj,

the combination resonance will take place in the system.
(6) On condition that or � oi � oj , the internal resonance will take place.
(7) On condition that two types of the resonance take place in the same time, the multiple resonance of the

system will take place in the system.
As analyzed above, the natural frequency or of the system is determined by the structural parameters and

the composite material parameters, and the frequency O0 is determined by the synchronous rev of the motor,
so the frequent factors shown in Eq. (37) are related to the structural parameters, the electromagnetic
parameters and the composite material parameters. That is to say, not only the structural parameters, but also
the electromagnetic parameters and the composite material parameters have significant effects on the
nonlinear vibration of the system.

4. Example

In order to study the effects of the electromagnetic parameters and the material parameters on the
motor–linkage mechanism system with links fabricated from three-dimensional braided composites, the four-
bar linkage mechanism with 1-links (without consideration of the effect of the electromotor on the
mechanism), the three-phase AC motor–four-bar linkage mechanism system with 1-links and the three-phase
AC motor–four-bar linkage mechanism system with 2-links are analyzed, respectively.
(1)
 The parameters of the electromotor.
The type of electromotor is YS8024 and the parameters of the electromotor are as follows: the length of
the iron core of the motor L01 ¼ 80mm, the inner diameter of the stator D1 ¼ 75mm, the rated power
PN ¼ 0.75 kW, the rated current IN ¼ 3:48=2:01A, the rated voltage V ¼ 220/380V, the length of the even
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air-gap d0 ¼ 0.25mm, the magnetic permeability coefficient of air m0 ¼ 4p� 10�7H/M, the saturation
ku ¼ 1.2, the number of the magnetic pole-pair of compounded magnetic field p ¼ 2, the rated rev
nN ¼ 1440 rpm, the mass of the rotor m10 ¼ 2.93 kg, the moment of inertia of the rotor J10 ¼ 0.021 kgm,
the frequency of the power supply f ¼ 50Hz, the synchronous rev of the motor o0 ¼ 25Hz.
(2)
 The geometrical parameters of the four-bar linkage mechanism.
L, b and h, respectively, represent the length, width and thickness of the links; the cross-sectional
parameters of every bar: b ¼ 20mm, h ¼ 5mm; the lengths are: crank L1 ¼ 210mm, coupler
L2 ¼ 585mm, rocker L3 ¼ 430mm, and frame L4 ¼ 600mm.
(3)
 The material parameters of the 1-links fabricated from three-dimensional braided composites.
The material composition of the 1-links is T300 Epoxylite and the material parameters are taken as
follows: G2m is the shear elastic modulus of matrix, and G2m ¼ 1.26GPa; v2f and v2m are, respectively, the
volume ratio of fiber and matrix, and v2f ¼ 0.25, v2m ¼ 0.35; r2f and r2m are, respectively the densities of
fiber and matrix, and r2f ¼ 1.76 g/cm3, r2m ¼ 1.36 g/cm3; the total volume ratio of fiber is 0.6; a and b are
the braided angles, and a ¼ 301, b ¼ 301.
(4)
 The material parameters of the 2-links fabricated from three-dimensional braided composites.
The material composition of the 2-links is T300 Epoxylite too. The material parameters of the 2-links are
the same as those of the 1-links except a and b, and a ¼ 531, b ¼ 471.
It is assumed that the rotating speed of the crank is O1 ¼ 288 rev=min ð¼ 4:8HzÞ, and it can be obtained by
Eq. (24) that O0 ¼ 2o0 ¼ 50Hz.

For the four-bar linkage mechanism with 1-links fabricated from three-dimensional braided composites
(without consideration of the effect of the electromotor), the first three-order natural frequencies of the
mechanism are calculated to be that o1 ¼ 47Hz, o2 ¼ 153Hz and o3 ¼ 269Hz. According to the parameters
above, we obtain 10O1Eo1, which shows that the condition of the super-harmonic resonance is satisfied, so
the super-harmonic resonance of the mechanism will take place on condition that 10O1Eo1. Meantime, the
forced vibrations of the mechanism will take place due to the self-excitation force, whose excitation
frequencies are obtained as O1, 2O1, y, kO1 by Eq. (32). The simulation time-domain and frequency-domain
dynamic response characteristics curves of the coupler midpoint of the mechanism are shown in Figs. 8 and 9,
respectively. In Fig. 9, it is known by analyzing that the peak at the first-order natural frequency (o1 ¼ 47Hz)
is mainly caused by the super-harmonic resonance and the peaks at the lower frequencies are mainly caused by
the forced vibrations.

For the three-phase AC motor–four-bar linkage mechanism system with 1-links fabricated from three-
dimensional braided composites, the first three-order natural frequencies of the system are calculated to be
that o1 ¼ 47Hz, o2 ¼ 153Hz and o3 ¼ 269Hz. According to the parameters above, we obtain O0 � O1 � o1

and 10O1Eo1, which show that the conditions of the combination resonance and the super-harmonic
resonance are satisfied in the same time, so the multiple resonance of the system will take place on condition
that O0 � O1 � o1 and 10O1Eo1. Meantime, the forced vibration of the system will take place due to the self-
excitation force, whose excitation frequencies are obtained as O1, 2O1, y, kO1 by Eq. (32). The simulation
time-domain and frequency-domain dynamic response characteristics curves of the coupler midpoint of
the system are shown in Figs. 10 and 11, respectively. In Fig. 11, it is known by analyzing that the peak at the
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Fig. 8. Simulation time-domain dynamic response characteristics curve of the coupler midpoint.
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Fig. 9. Simulation frequency-domain dynamic response characteristics curve of the coupler midpoint.
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Fig. 11. Simulation frequency-domain dynamic response characteristics curve of the coupler midpoint.
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first-order natural frequency (o1 ¼ 47Hz) is mainly caused by the multiple resonance and the peaks at the
lower frequencies are mainly caused by the forced vibrations.

For the three-phase AC motor–four-bar linkage mechanism system with 2-links fabricated from three-
dimensional braided composites, the first three-order natural frequencies of the system are calculated to be
that o1 ¼ 47Hz, o2 ¼ 177Hz and o3 ¼ 313Hz. According to the parameters above, we obtain O0 þ O1 � o1

and 11O1Eo1, which show that the conditions of the combination resonance and the super-harmonic
resonance are satisfied in the same time, so the multiple resonance of the system will take place on condition
that O0 þ O1 � o1 and 11O1Eo1. Meantime, the forced vibration of the system will take place due to the self-
excitation force, whose excitation frequencies are obtained as O1, 2O1, y, kO1 by Eq. (32). The simulation
time-domain and frequency-domain dynamic response characteristics curves of the coupler midpoint of the
system are shown in Figs. 12 and 13, respectively. In Fig. 13, it is known by analyzing that the peak at the first-
order natural frequency (o1 ¼ 54Hz) is mainly caused by the multiple resonance and the peaks at the lower
frequencies are mainly caused by the forced vibrations.

The results of the simulations presented in Figs. 8–13 show: (1) the dynamic responses of the coupler
midpoint of the system with consideration of the effect of the electromotor are greater than those of the system
without consideration of the effect of the electromotor, because the electromagnetic parameters of the motor
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Fig. 13. Simulation frequency-domain dynamic response characteristics curve of the coupler midpoint.
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Fig. 12. Simulation time-domain dynamic response characteristics curve of the coupler midpoint.
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have important effects on the nonlinear vibration of the system; (2) the dynamic responses of the coupler
midpoint of the system vary with the material parameters of three-dimensional braided composites, because
the material parameters have important effects on the nonlinear vibration of the system.

5. Conclusions

In this paper, the nonlinear vibration of the three-phase AC motor–linkage mechanism system with links
fabricated from three-dimensional braided composite materials is studied. The relation between the nonlinear
vibration of the system and the parameters of the system is obtained. The study shows that not only the
structural parameters, but also the electromagnetic parameters and the material parameters have significant
effects on the nonlinear vibration of the system; and that under certain conditions, there exist internal
resonance, super-harmonic resonance, 1/2-order sub-harmonic resonance, 1/3-order sub-harmonic resonance,
combination resonance, and multiple resonance. This paper is helpful for deeply carrying out the analytical
and experimental studies on the dynamic response, harmonic oscillations, stability and choas control of the
motor–linkage mechanism system with links fabricated from three-dimensional braided composite materials.
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Appendix

According to the finite element method, W1Y(x, t), W1Z(x, t) and V1(x, t) can be expressed as

W 1Y ðx; tÞ ¼ f1ðxÞu1ðtÞ;

W 1Zðx; tÞ ¼ f2ðxÞu2ðtÞ;

V1ðx; tÞ ¼
P

i

fiðxÞuiðtÞ; i ¼ 3; 4;

8>><
>>:
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where f1(x), f2(x), f3(x), f4(x) are the shape functions, and

f1;2ðxÞ ¼

1� 10e311 þ 15e411 � 6e511; xpl11

1� 10e312 þ 15e412 � 6e512; l11ox5l11 þ l12

0; l11 þ l12oxpl11 þ l12 þ l13

8><
>:

f3ðxÞ ¼

0; xpl11;

1� e12; l11oxpl11 þ l12;

e13; l11 þ l12oxpl11 þ l12 þ l13;

8><
>:

f4ðxÞ ¼

0; xpl11;

0; l11oxpl11 þ l12;

1� e13; l11 þ l12oxpl11 þ l12 þ l13;

8><
>:

where e11 ¼ x=l11, e12 ¼ l11 þ l12 � x=l12, e13 ¼ l1 � x=l13.
The mass matrix of the electromotor element m̄1 is

ðm̄1Þ11 ¼

Z l1

0

½m1ðxÞ þm10dðl11Þ�f1ðxÞf1ðxÞdx,

ðm̄1Þ22 ¼

Z l1

0

½m1ðxÞ þm10dðl11Þ�f2ðxÞf2ðxÞdx,

ðm̄1Þkp ¼

Z l1

0

½J1ðxÞ þ J10�fkðxÞfpðxÞdx; k; p ¼ 3; 4,

the other terms of m̄1 are zeros.
The stiffness matrix of the electromotor element k̄1 is

ðk̄1Þ11 ¼

Z l1

0

E1I1ðxÞ
q2f1ðxÞ

qx2

� �2
dx,

ðk̄1Þ22 ¼

Z l1

0

E1I1ðxÞ
q2f1ðxÞ

qx2

� �2
dx,

ðk̄1Þkp ¼

Z l1

0

G1J01ðxÞ
qfkðxÞ

qx

qfpðxÞ

qx
dx; k; p ¼ 3; 4.

The stiffness matrix of the electromotor element k̄01 is

ðk̄01Þ11 ¼ �2g4 � g5 cos ðO0tÞ � g6 sin ðO0tÞ,

ðk̄01Þ12 ¼ ðk̄0Þ21 ¼ �g5 sin ðO0tÞ þ g6 cos ðO0tÞ,

ðk̄01Þ22 ¼ �2g4 þ g5 cos ðO0tÞ þ g6 sin ðO0tÞ,

the other terms of k̄01 are zeros, where

O0 ¼ 2o0,

g4 ¼
pR1L01L0

4s2
½F 2

1m þ F2
2m þ 2F 1mF 2m cos f�,

g5 ¼
pR1L01L0

4s2
½F 2

1m þ F2
2m cos 2fþ 2F 1mF 2m cos f�,
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g6 ¼
pR1L01L0

4s2
½F 2

2m sin 2fþ 2F1mF2m sin f�,

K11, K12 and K13 are:

ðK11Þ11 ¼ ðK11Þ22 ¼ �2g4,

ðK12Þ11 ¼ �g5; ðK12Þ12 ¼ ðK12Þ21 ¼ g6; ðK12Þ22 ¼ g5,

ðK13Þ11 ¼ �g6; ðK13Þ12 ¼ ðK13Þ21 ¼ �g5; ðK13Þ22 ¼ g6,

the other terms of K11, K12 and K13 are zeros.
According to the finite element method, W 2ðx̄; tÞ and V2ðx̄; tÞ can be expressed as

W 2ðx̄; tÞ ¼
P

i

fiðx̄ÞuiðtÞ; i ¼ 6; 7; 8; 10; 11; 12;

V 2ðx̄; tÞ ¼
P

j

fjðx̄ÞujðtÞ; j ¼ 5; 9;

8><
>:

where f5ðx̄Þ, f6ðx̄Þ, f7ðx̄Þ, f8ðx̄Þ, f9ðx̄Þ, f10ðx̄Þ, f11ðx̄Þ, f12ðx̄Þ are the shape functions, and

f5ðx̄Þ ¼ 1� e2,

f6ðx̄Þ ¼ 1� 10e32 þ 15e42 � 6e52,

f7ðx̄Þ ¼ l2ðe2 � 6e32 þ 8e42 � 3e52Þ,

f8ðx̄Þ ¼ l22ðe
2
2 � 3e32 þ 3e42 � e52Þ=2,

f9ðx̄Þ ¼ e2,

f10ðx̄Þ ¼ 10e32 � 15e42 þ 6e52,

f11ðx̄Þ ¼ l2ð�4e32 þ 7e42 � 3e52Þ,

f12ðx̄Þ ¼ l22ðe
3
2 � 2e42 þ e52Þ=2,

where e2 ¼ x̄=l2.
The mass matrix of the beam element m̄2 is

ðm̄2Þij ¼

Z l2

0

r2A2ðx̄Þfiðx̄Þfjðx̄Þdx̄; i; j ¼ 6; 7; 8; 10; 11; 12,

ðm̄2Þkp ¼

Z l2

0

r2A2ðx̄Þfkðx̄Þfpðx̄Þdx̄; k; p ¼ 5; 9.

The stiffness matrix of the beam element k̄2 is

k̄2 ¼
X4
j¼1

1

2

Z
Oj

ST
2 LT

2jC2jL2jS2 dOj.
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